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Operations Count and Data Locality in AD

A. Lyons (Vanderbilt U.) / J. Utke (ANL)

“Minimizing operations counts and maximizing data locality

for efficient derivative codes in automatic differentiation”

1. automatic differentiation (AD) and graphs

2. graph operations and code generation in AD

3. high level concerns (adjoints with checkpointing)

4. low level code generation has significant runtime effects

5. assumption 1: optimizing beasic block preaccumulations is significant

6. assumption 2: data locality is significant

7. assumption 3: code can be generated to help compiler optimization

8. ⇒ heuristics

9. experiments and conclusions bad
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AD in general

• derivatives for numerical models (sci-

ence, engineering)

• optimization, parameter estimation,

sensitivity/uncertainty analysis

• need derivative information (gradi-

ents, Jacobian/Hessian vector prod-

ucts)

• large scale computation

• complexity/quality issues with finite

differences

MIT General Circulation Model

(ocean,atmosphere) c©Heimbach/Hill @ MIT

model scalable from

single PC to 1000+

processor clusters
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AD and graphs: a simple example

f : y = sin(a ∗ b) ∗ c

yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

b c

t1

t2

t2

sin

a

• use some temporaries t1, t2

• all intrinsics φ(. . . , w, . . .) have local partial deriva-

tives ∂φ

∂w
as edge labels:

• may have to compute partials

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

academic
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(local) Jacobians 1

b a

c

a b c

t2p1

edge elimination: pick an edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c
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(local) Jacobians 2

a

c
*

a b c

t2p1

b

edge elimination: front elimination: pairs with

outgoing edges of target vertex

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c
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(local) Jacobians 3

a

c

a b c

t2p1

b*p1

edge eliminations: multiply edge labels and

attach to edge with same source and target of

the paired edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1
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(local) Jacobians 4

a

c

a b c

t2p1

b*p1

edge eliminations: pick the next target

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1
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(local) Jacobians 5

a

c

a b c

t2p1

b*p1

edge eliminations: pair it up with the

outgoing edges of the target vertex

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1
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(local) Jacobians 6

c

a b c

t2p1

b*p1
a*p1

c

a b c

t2p1

b*p1
a*p1

edge eliminations: multiply the labels

and attach the result

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1
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(local) Jacobians 7

c

a b c

t2p1

z2z1

edge eliminations: there is an isolatex

vertex/edge that can be removed;

rename edge labels

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1
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(local) Jacobians 8

c

a b c

t2

z2

c

a b c

t2

z2z1

edge eliminations: pick the next edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1
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(local) Jacobians 9

c

a b c

t2

z2
z1*c

edge eliminations: multiply labels etc.

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1

z3 = z1 * c
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(local) Jacobians 10

c

a b c

t2

z2
z3

edge eliminations: pick the next one

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1

z3 = z1 * c
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(local) Jacobians 11

a b c

t2
z3

z2*c

edge eliminations: mutliply labels etc.

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1

z3 = z1 * c

z4 = z2 * c
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(local) Jacobians 12

a b c

t2
z3

z4

edge eliminations: bipartite graph,

done in 4 operations

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = b * p1

z2 = a * p1

z3 = z1 * c

z4 = z2 * c jading
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(local) Jacobians 13

b

c

b c

t2

a

a

p1

edge elimination: pick an edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c
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(local) Jacobians 14

b

c

b c

t2

a

a

p1

edge elimination: back elimination: pairs with

incoming edges of source vertex

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c
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(local) Jacobians 15

b

b c

t2

a

a

p1

b

b c

t2

a

a

c*p1

edge eliminations: multiply edge labels

and attach to edge with same target

and source of the paired edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1
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(local) Jacobians 16

b

b c

t2

a

a

z1

edge eliminations: isolated vertex/edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1

Lyons/Utke Vanderbilt U / ANL



CSC 2005 Operations Count and Data Locality in AD 20'

&

$

%

(local) Jacobians 17

b

b c

t2

a

a

z1

edge eliminations: pick the next edge

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1
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(local) Jacobians 18

b c

t2

a

a

z1

z1*b

edge eliminations: multiply edge labels

for the first pair

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1

z2 = z1 * b
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(local) Jacobians 19

b c

t2

a

a

z1*b z1*a

edge eliminations: multiply edge labels

for the second pair

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1

z2 = z1 * b

z3 = z1 * a
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(local) Jacobians 20

b c

t2

a

z2 z3

edge eliminations: bipartite graph,

done in 3 operations

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

z1 = c * p1

z2 = z1 * b

z3 = z1 * a

dead
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a bigger graph
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heuristics

• pick an elimination target from an eligible set S

• each heuristic h : S 7→ S′ ⊆ S

• heuristic sequence hk(. . . h2(h1(S)) . . .) with a tie-breaker hk (such as

“reverse”) returns a single elimination target

• eliminate target ⇒ modified graph ⇒ new S

• done when S = ∅

• operation count heuristics: Markowitz

Harry Max Markowitz, b. 1927, economics NP 1990,

“Becoming an economist was not a childhood dream of mine.”

• data locality: forward, reverse, sibling(s), pc, absorb

• forward (top sort): first mark all minimal vertices, mark vertices with all

pred. marked (order based on undelying graph representation)

• reverse: reverse of forward

Lyons/Utke Vanderbilt U / ANL
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heuristics

• pick an elimination target from an eligible set S

• each heuristic h : S 7→ S′ ⊆ S

• heuristic sequence hk(. . . h2(h1(S)) . . .) with a tie-breaker hk (such as

“reverse”) returns a single elimination target

• eliminate target ⇒ modified graph ⇒ new S

• done when S = ∅

• operation count heuristics: Markowitz

Harry Max Markowitz, b. 1927, economics NP 1990,

“Becoming an economist was not a childhood dream of mine.”

• data locality: forward, reverse, sibling(s), pc, absorb

• forward (top sort): first mark all minimal vertices, mark vertices with all

pred. marked (order based on undelying graph representation)

• reverse: reverse of forward
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sibling heuristics

relate subsequent elimination target with respect to the variables occuring in

the current elimination step:

current next A next B vertex elimination

before

after

• same target, max number of source’s predecessors, or

• same source, max number of target’s successors

dreadful

Lyons/Utke Vanderbilt U / ANL
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sibling heuristics 2

for edge eliminations grouped into vertex eliminations (target is a vertex):

current next A next B

before

after

• max product of shared predecessors and successors
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pc – vertex

• does not mean “nouvelle orthodoxie”
(politically correct translation of political correctness

purportedly given by the Office Québécois de la Langue Française )

• parent-child (or the other way round)

• but prefers targets with high Markowitz degree ⇒ sequence after

Markowitz

malady
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RF graph
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RF results – vertex elimination
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RF results – vertex elimination

heuristics time∗ mults adds comments

h1: reverse

2.1346599

.91040001

.93199997

1639 664
reverse because 16 independents -

5 dependents

h1: Markowitz

h2: reverse

1.8921801

.89185996

.94176003

1305 738
initially Markowitz degree 1, then 2

⇒ reverse until last 38 (5th last

Markowitz degree 70)

h1: Markowitz

h2: sibling

h3: reverse

1.8850400

.93387998

.93097997

1305 738
no siblings until the last 15%. (like

popcorn)

h1: sibling

h2: reverse

2.1185801

.91474003

.89746000

1639 667 23 siblings from 222 eliminations

h1: sibling

h2: Markowitz

h3: reverse

2.1619000

1.1436000

1.1503800

1674 1032

h1: Markowitz

h2: pc

h3: reverse

1.9009200

.90116000

.89630003

1314 738 not much slower than the fastest

h1: pc

h2: reverse

4.0542000

2.4809600

4.9855200

4298 2125 pc runs counter Markowitz

h1: pc

h2: Markowitz

h3: reverse

2.1073880

3.2610002

6.1801598

5656 2855 pc runs counter Markowitz

∗ ifort on Linux/Intel flags: -O0 / -O1 / -O3
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RF results – edge elimination
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RF results – edge elimination

heuristics time∗ mults adds comments

h1: reverse

2.5624000

.99068002

.85047996

1639 664 marginally better than vertex elimina-

tion

h1: Markowitz

h2: reverse

2.0155800

.96147996

1.0048000

1472 824

h1: Markowitz

h2: sibling

h3: reverse

1.9675001

.88325996

.88478000

1420 795

h1: sibling

h2: reverse

2.3091199

.88675997

.87183998

1660 667

h1: sibling

h2: Markowitz

h3: reverse

2.2150200

1.0113000

1.0213200

1708 990

h1: Markowitz

h2: pc

h3: reverse

2.0704199

.97060001

.97131997

1469 824

h1: pc

h2: reverse

3.4875000

1.8960000

1.8893999

3931 2066 same behavior as in vertex elimination

h1: pc

h2: Markowitz

h3: reverse

5.8903399

2.4457800

2.4552801

6532 3770 same behavior as in vertex elimination

∗ -O0 / -O1 / -O3
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TM graph
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TM results – vertex elimination

Lyons/Utke Vanderbilt U / ANL



CSC 2005 Operations Count and Data Locality in AD 37'

&

$

%

TM results – vertex elimination

heuristics time∗ mults adds comments

h1: reverse

1.2493000

1.2736400

.25096001

2037 566

h1: Markowitz

h2: reverse

2.2586401

2.2754401

.13962000

1360 433

h1: Markowitz

h2: sibling

h3: reverse

2.0593399

2.1214601

.14244000

1360 433

h1: sibling

h2: reverse

3.5347799

3.4022600

.23806001

2065 590

h1: sibling

h2: Markowitz

h3: reverse

.77883997

.79069996

.12492000

1125 325

h1: Markowitz

h2: pc

h3: reverse

.89196001

.89843998

.14296000

1361 433

h1: pc

h2: reverse

1.8635399

1.8957400

.51779998

3633 1251

h1: pc

h2: Markowitz

h3: reverse

1.6529601

1.6788401

.26920000

3142 1069

∗ ifort on Linux/Intel flags: -O0 / -O1 / -O3
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TM results – edge elimination
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TM results – edge elimination

heuristics time∗ mults adds comments

h1: reverse

1.6197801

1.6393400

.19731999

2037 566

h1: Markowitz

h2: reverse

1.0008000

.98913997

.14300000

1383 423

h1: Markowitz

h2: sibling

h3: reverse

.95034002

.97614002

.14446000

1347 411

h1: sibling

h2: reverse

1.5942800

1.6216600

.19540000

2055 572

h1: sibling

h2: Markowitz

h3: reverse

2.0748999

2.1038000

.12775999

1208 350

h1: Markowitz

h2: pc

h3: reverse

.99008003

.98853998

.14446000

1383 423

h1: pc

h2: reverse

1.9577399

1.9643800

.21748001

3599 1243

h1: pc

h2: Markowitz

h3: reverse

1.8553401

1.9116200

.44260000

3431 1185

∗ -O0 / -O1 / -O3
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DC graph
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DC results – vertex elimination
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DC results – vertex elimination

heuristics time∗ mults adds comments

h1: reverse

5.3393600

3.8298000

3.8138602

129 26

h1: Markowitz

h2: reverse

5.0617800

3.7949601

3.7798200

129 26

h1: Markowitz

h2: sibling

h3: reverse

5.0407401

3.7596801

3.7627800

129 26

h1: sibling

h2: reverse

5.2046598

3.7990601

3.8121401

129 26

h1: sibling

h2: Markowitz

h3: reverse

5.0470800

3.8194401

3.7762398

129 26

h1: Markowitz

h2: pc

h3: reverse

5.0745999

3.8050199

3.8028200

147 26

h1: pc

h2: reverse

5.3799398

3.8230599

3.8355800

145 28

h1: pc

h2: Markowitz

h3: reverse

5.3634802

3.8308601

3.8415601

154 31

∗ ifort on Linux/Intel flags: -O0 / -O1 / -O3
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DC results – edge elimination
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DC results – edge elimination

heuristics time∗ mults adds comments

h1: reverse

5.3263200

3.8164599

3.8144000

129 26

h1: Markowitz

h2: reverse

5.0944600

3.7922000

3.8168600

129 26

h1: Markowitz

h2: sibling

h3: reverse

5.1780000

3.8327998

3.8279799

129 26

h1: sibling

h2: reverse

5.1891999

3.8130998

3.7996801

129 26

h1: sibling

h2: Markowitz

h3: reverse

5.1781401

3.8280599

3.8433001

129 26

h1: Markowitz

h2: pc

h3: reverse

5.4553599

3.8289199

3.8206799

129 26

h1: pc

h2: reverse

5.7405199

4.0686002

4.0551400

184 41

h1: pc

h2: Markowitz

h3: reverse

6.2111401

4.1804400

4.1750201

238 49

∗ -O0 / -O1 / -O3
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absorb 1

• pick elimination targets such that absorption happens

• J. Pryce (Nov/04): regroup operations

a = a + bc; e = e + fg; h = h + ij; a = a + kl; m = m + no; a = a + pq

based on the absorbing a to a = a + bc + kl + pq

• not representable in the computational graph
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absorb 2

• pick elimination targets such that absorption happens

• J. Pryce (Nov/04): regroup operations

a = a + bc; e = e + fg; h = h + ij; a = a + kl; m = m + no; a = a + pq

based on the absorbing a to a = a + bc + kl + pq

• not representable in the computational graph ⇒ directed line graph

mad
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absorb 3

• pick elimination targets such that absorption happens

• J. Pryce (Nov/04): regroup operations

a = a + bc; e = e + fg; h = h + ij; a = a + kl; m = m + no; a = a + pq

based on the absorbing a to a = a + bc + kl + pq

• not representable in the computational graph ⇒ directed line graph
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absorb 4

• pick elimination targets such that absorption happens

• J. Pryce (Nov/04): regroup operations

a = a + bc; e = e + fg; h = h + ij; a = a + kl; m = m + no; a = a + pq

based on the absorbing a to a = a + bc + kl + pq

• not representable in the computational graph ⇒ directed line graph
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implementation & conclusions

• ACTS project Argonne National Laboratory, MIT, Rice Univer-

sity, RWTH Aachen

• numerical models (design optimization, chemical engineering,

oceanography)

• transformations: automatic differentiation, interval, ensemble

computations (uncertainty estimates)

• Fortran (C/C++, Matlab, Java)

• website: www.mcs.anl.gov/openad

• in adjoint code context effects are smaller than checkpointing / taping improvements

• data locality heuristics doesn’t improve things (compiler gets that part right)

• op count does improve things (compiler can’t improve)

• late stage improvements, but automated

• consistent through compiler optimization

• before final conclusion: more examples, more compilers, constant folding

• future potential: vector operations

adieu!
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